February 2021 Volume 3
FORGING RESEARCH
[20] O.G. Rivera, P.G. Allison, L.N. Brewer, J.B. Jordon, O.L. Rodriguez, W.R. Whittington, Z. Mcclelland, C.T.C.J.T. Mason, L. Garcia, N. Hardwick, R.L. Martens, J.B. Jordon, T. Liu, W.R. Whittington, R.L. Martens, Z. Mcclelland, C.T.C.J.T. Mason, L. Garcia, J.Q. Su, N. Hardwick, Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Depositions Fabricated by HIgh Shear Solid StateMaterial Deposition, Mater. Sci. Eng. A. 724 (2018) 547–558. https://doi.org/ https://doi.org/10.1016/j.msea.2018.03.088. [21] J.B. Jordon, P.G. Allison, B.J. Phillips, D.Z. Avery, R.P. Kinser, L.N. Brewer, C. Cox, K. Doherty, Direct recycling of machine chips through a novel solid-state additive manufacturing process, Mater. Des. 193 (2020). https:// doi.org/10.1016/j.matdes.2020.108850. [22] B.A. Rutherford, D.Z. Avery, B.J. Phillips, H.M. Rao, K.J. Doherty, P.G. Allison, L.N. Brewer, J. Brian Jordon, Effect of thermomechanical processing on fatigue behavior in solid-state additive manufacturing of Al-Mg-Si alloy, Metals (Basel). 10 (2020) 1–17. https://doi.org/10.3390/ met10070947. [23] B.J. Phillips, D.Z. Avery, T. Liu, O.L. Rodriguez, C.J.T. Mason, J.B. Jordon, L.N. Brewer, P.G. Allison, Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al-Mg-Si, Materialia. 7 (2019) 100387. https://doi.org/10.1016/j.mtla.2019.100387. [24] D.Z. Avery, B.J. Phillips, C.J.T. Mason, M. Palermo, M.B. Williams, C. Cleek, O.L. Rodriguez, P.G. Allison, J.B. Jordon, Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 51 (2020) 2778– 2795. https://doi.org/10.1007/s11661-020-05746-9. [25] O.G. Rivera, P.G. Allison, J.B. Jordon, O.L. Rodriguez, L.N. Brewer, Z. McClelland, W.R. Whittington, D. Francis, J. Su, R.L. Martens, N. Hardwick, Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing, Mater. Sci. Eng. A. (2017). https://doi.org/10.1016/j. msea.2017.03.105.
[26] Personal Communication Hang Yu, (2020). [27] Center for Advanced Non-Ferrous Structural Alloys, (2020). https://canfsa.org/. [28] C. Schade, Introduction to Metal Powder Production and Characterization[1], Powder Metall. 7 (2015) 0. https:// doi.org/10.31399/asm.hb.v07.a0006086. [29] C. Schade, J.J. Dunkley, Atomization[1], Powder Metall. 7 (2015) 0. https://doi.org/10.31399/asm.hb.v07.a0006084. [30] D. Vojtěch, J. Verner, J. Šerák, F. Šimančík, M. Balog, J. Nagy, Properties of thermally stable PM Al-Cr based alloy, Mater. Sci. Eng. A. 458 (2007) 371–380. https://doi. org/10.1016/j.msea.2006.12.136. [31] S. Pedrazzini, M. Galano, F. Audebert, G. Smith, Elevated temperaturemechanical behaviourof nanoquasicrystalline Al93Fe3Cr2Ti2 alloy and composites, Mater. Sci. Eng. A. Struct. Mater. 705 (2017) 352. [32] F. Audebert, F. Prima, M. Galano, M. Tomut, P. Warren, I. Stone, B. Cantor, Structural Characterisation and Mechanical Properties of Nanocomposite Al-based Alloys, Mater. Trans. 43 (2002) 2017–2025. https://doi. org/10.2320/matertrans.43.2017. [33] M. Galano, F. Audebert, A.G. Escorial, I.C. Stone, B. Cantor, Nanoquasicrystalline Al-Fe-Cr-based alloys with high strength at elevated temperature, J. Alloys Compd. 495 (2010) 372–376. https://doi.org/10.1016/j. jallcom.2009.10.208. [34] S. Pedrazzini, M. Galano, F. Audebert, P. Siegkas, R. Gerlach, V.L. Tagarielli, G.D.W. Smith, High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites, Mater. Sci. Eng. A. 764 (2019) 138201. https://doi.org/https://doi.org/10.1016/j. msea.2019.138201. ■
FIA MAGAZINE | FEBRUARY 2021 82
Made with FlippingBook Digital Proposal Maker